Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
EBioMedicine ; 86: 104375, 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2122423

ABSTRACT

BACKGROUND: Immunity to mosquito salivary proteins could provide protection against multiple mosquito-borne diseases and significantly impact public health. We evaluated the safety and immunogenicity of AGS-v PLUS, a mosquito salivary peptide vaccine, in healthy adults 18-50 years old. METHODS: We conducted a randomized, double-blind, placebo-controlled Phase 1 study of AGS-v PLUS administered subcutaneously on Days 1 and 22 at the Center for Vaccine Development and Global Health, Baltimore, MD, USA. Participants were block randomized 1:1:1:1:1 to two doses saline placebo, two doses AGS-v PLUS, AGS-v PLUS/ISA-51 and saline placebo, two doses AGS-v PLUS/ISA-51, or two doses AGS-v PLUS/Alhydrogel. Primary endpoints were safety (all participants receiving ≥1 injection) and antibody and cytokine responses (all participants with day 43 samples), analysed by intention to treat. FINDINGS: Between 26 August 2019 and 25 February 2020, 51 participants were enrolled and randomized, 11 into the single dose AGS-v PLUS/ISA-51 group and ten in other groups. Due to COVID-19, 15 participants did not return for day 43 samplings. Participants experienced no treatment-emergent or serious adverse events. All solicited symptoms in 2/10 placebo recipients and 22/41 AGS-v PLUS recipients after dose one and 1/10 placebo recipients and 22/41 AGS-v PLUS recipients after dose two were mild/moderate except for one severe fever the day after vaccination (placebo group). Only injection site pain was more common in vaccine groups (15/51 after dose 1 and 11/51 after dose 2) versus placebo. Compared to placebo, all vaccine groups had significantly greater fold change in anti-AGS-v PLUS IgG and IFN-É£ from baseline. INTERPRETATION: AGS-v PLUS had favourable safety profile and induced robust immune responses. Next steps will determine if findings translate into clinical efficacy against mosquito-borne diseases. FUNDING: UK Department of Health and Social Care.

2.
Lancet Glob Health ; 10(9): e1326-e1335, 2022 09.
Article in English | MEDLINE | ID: covidwho-1977936

ABSTRACT

BACKGROUND: Typhoid fever is a substantial public health problem in Africa, yet there are few clinical trials of typhoid conjugate vaccine (TCV). We assessed immunogenicity and safety of Typbar TCV in Malawi. METHODS: This substudy was nested within a phase 3, double-blind, parallel design, randomised controlled trial of TCV in children from Ndirande Health Centre in Ndirande township, Blantyre, Malawi. To be eligible, participants had to be aged between 9 months and 12 years with no known immunosuppression or chronic health conditions, including HIV or severe malnutrition; eligible participants were enrolled into three strata of approximately 200 children (9-11 months, 1-5 years, and 6-12 years), randomly assigned (1:1) to receive TCV or control (meningococcal serogroup A conjugate vaccine [MCV-A]) intramuscularly. Serum was collected before vaccination and at 28 days and 730-1035 days after vaccination to measure anti-Vi antibodies by ELISA. Because of COVID-19, day 730 visits were extended up to 1035 days. This nested substudy evaluated reactogenicity, safety, and immunogenicity by age stratum. Safety outcomes, analysed in the intention-to-treat population, included solicited adverse events within 7 days of vaccination (assessed on 3 separate days) and unsolicited adverse events within 28 days of vaccination. This trial is registered with ClinicalTrials.gov, NCT03299426. FINDINGS: Between Feb 22 and Sept 6, 2018, 664 participants were screened, and 631 participants were enrolled and randomly assigned (320 to the TCV group and 311 to the MCV-A group). 305 participants in the TCV group and 297 participants in the MCV-A group were vaccinated. Among TCV recipients, anti-Vi IgG geometric mean titres increased more than 500 times from 4·2 ELISA units (EU)/mL (95% CI 4·0-4·4) at baseline to 2383·7 EU/mL (2087·2-2722·3) at day 28, then decreased to 48·0 EU/mL (39·9-57·8) at day 730-1035, remaining more than 11 times higher than baseline. Among MCV-A recipients, anti-Vi IgG titres remained unchanged: 4·3 EU/mL (4·0-4·5) at baseline, 4·4 EU/mL (4·0-4·7) on day 28, and 4·6 EU/mL (4·2-5·0) on day 730-1035. TCV and MCV-A recipients had similar solicited local (eight [3%] of 304, 95% CI 1·3-5·1 and three [1%] of 293, 0·4-3·0) and systemic (27 [9%] of 304, 6·2-12·6 and 27 [9%] of 293, 6·4-13·1) reactogenicity. Related unsolicited adverse events occurred similarly in TCV and MCV-A recipients in eight (3%) of 304 (1·3-5·1) and eight (3%) of 293 (1·4-5·3). INTERPRETATION: This study provides evidence of TCV safety, tolerability, and immunogenicity up to 730-1035 days in Malawian children aged 9 months to 12 years. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
COVID-19 , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Vaccines, Conjugate , Child , Double-Blind Method , Humans , Immunoglobulin G , Infant , Malawi , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines/adverse effects , Vaccines, Conjugate/adverse effects
3.
Hum Vaccin Immunother ; 17(11): 4549-4552, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1341084

ABSTRACT

Malaria vaccines hold significant promise for life-saving benefit, especially to children who bear the major burden of malaria mortality. The RTS,S/AS01 malaria vaccine provides moderate efficacy and is being tested in implementation studies. In parallel, multiple strategies are being advanced to test next-generation malaria vaccines, including novel approaches that build on principles learned from RTS,S development, vaccination with radiation-attenuated sporozoites, and development of monoclonal antibodies targeting immunogenic peptides. Novel vaccine delivery approaches are also being advanced, including self-amplifying RNA vaccine delivery, self-assembling protein nanoparticle methods, circumsporozoite protein-based approaches, and whole organism vaccination. Techniques employed for COVID-19 vaccine development should also be considered for malaria vaccination, including sustained release polymer nanoparticle hydrogel vaccination and charge-altering releasable transporters. As vaccine science advances and new approaches optimize knowledge gained, highly effective malaria vaccines that provide sustained protection are within reach.


Subject(s)
COVID-19 , Malaria Vaccines , Malaria, Falciparum , COVID-19 Vaccines , Child , Humans , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , SARS-CoV-2 , Vaccination , Vaccine Development , Vaccines, Synthetic , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL